There's a minimum size at which such mechanisms will work, and it's bigger than transistors. This won't scale down to single atoms, according to chemists.
[1] http://www.nanoindustries.com/nanojbl/NanoConProc/nanocon2.h...
Edit: I love that other people are thinking about this around now
Another way of looking at it: there are 4 states going in (0 or 1 on 2 pushers) but there are only 2 states of the 'memory' contraption, so you lose a bit on every iteration (like classical Boolean circuits)
But ideally once manufactured, a given LLM "model" will be a single solid crystal, such that shining an array of beams into it, will come out the other end of this complex crystal as an "inference" result. This will mean an LLM that consumes ZERO ENERGY, and made of glass will also basically last forever too.
We already have Optical Chips but they don't quite do what I'm saying. What I'm saying is essentially an "Analog LLM" where all the vector adds, mults, and tanh functions are done by the light interactions. It seems possible, but I think it's doable.I think there should theoretically be a "lens shape" that does an activation function, for example. Even if we have to do the multiplications by conventional chips, in a hybrid "silicon-wave system" such an "Analog Optical LLM" would still have huge performance and energy savings, and millions of times faster than today's tech.
And being based on light, could utilize quantum effects so that the whole thing can become a Quantum Computer as well. We could use effects like polarization and photon spin perhaps to even have 100s of inferences happening simultaneously thru a given apparatus, as long as wavelengths are different enough to not interact.
Wow! What an absurd claim!
I checked the Wikipedia page and I think you actually meant 10^-21 J :)
If you start with blank tape then it isn't really reversible computing, you're just doing erasure up front.